Χαρτογράφηση 2000-2010, Αλλαγή των Αδιάβροχων Επιφανειών Εδάφους στην Ινδία χρησιμοποιώντας Στοιχεία Παγκόσμιας Έρευνας Εδάφους Landsat.

Από RemoteSensing Wiki

Μετάβαση σε: πλοήγηση, αναζήτηση

Χαρτογράφηση 2000-2010, Αλλαγή των Επιφανειών Εδάφους στην Ινδία χρησιμοποιώντας Στοιχεία Παγκόσμιας Έρευνας Εδάφους Landsat.


Πρωτότυπος τίτλος: Mapping 2000–2010 Impervious Surface Change in India Using Global Land Survey Landsat Data

Συγγραφείς:Panshi Wang, Chengquan Huang and Eric C. Brown de Colstoun

Σύνδεσμος πρωτότυπου κειμένου: [1]


ΠΕΡΙΛΗΨΗ

Η κατανόηση και η παρακολούθηση των περιβαλλοντικών επιπτώσεων της παγκόσμιας αστικοποίησης απαιτεί καλύτερα αστικά δεδομένα. Η συνεχής χαρτογράφηση της αλλαγής των αδιάβροχων/αδιαπέραστων επιφανειών (ISC) με χρήση δεδομένων Landsat είναι ένας αποτελεσματικός τρόπος για την ποσοτικοποίηση της δυναμικής αλλαγής της αστικοποίησης. Είναι ευρέως αποδεκτό ότι η εκτίμηση της αδιάβροχης επιφάνειας με Landsat υπόκειται σε εποχιακές μεταβολές. Ο γενικός στόχος αυτής της εργασίας είναι να χαρτογραφήσει τα αδιαπέραστα εδάφη στα έτη 2000-2010 για την Ινδία, χρησιμοποιώντας στοιχεία από τηn παγκόσμια έρευνα εδάφους μόνο για το 2010. Για το σκοπό αυτό, αναπτύχθηκε μια μέθοδος που θα μπορούσε να μεταφέρει το μοντέλο δέντρου παλινδρόμησης που αναπτύχθηκε για τη χαρτογράφηση της επιφάνειας 2010 στο 2000, χρησιμοποιώντας μια επαναληπτική μέθοδο πρόβλεψης (ITP). Δημιουργήθηκε επίσης ένα ανεξάρτητο σύνολο δεδομένων επικύρωσης χρησιμοποιώντας εικόνες από το εργαλείο Google Earth. Η ρίζα του μέσου τετραγώνου του σφάλματος των προβλεπόμενων αδιάβροχων επιφανειών ISC εκτιμήθηκε σε 18.4% ενώ σε επίπεδο εμπιστοσύνης 95%, η συνολική εκτιμηθείσα ISC για την Ινδία μεταξύ 2000 και 2010 είναι 2274,62 +7.84 km2.

ΕΙΣΑΓΩΓΗ

Η πρώτη δεκαετία του εικοστού πρώτου αιώνα γνώρισε ταχεία αστικοποίηση. Περισσότερος από τον μισό παγκόσμιο πληθυσμό κατοικεί σήμερα σε αστικές περιοχές και ο αστικός πληθυσμός αναμένεται να φτάσει τα δύο τρίτα του παγκόσμιου πληθυσμού μέχρι το 2050. Αυτή η φυσική εκδήλωση της παγκόσμιας διαδικασίας αστικοποίησης της επιφάνειας της γης περιλαμβάνει τη μετατροπή των δασών, των λιβαδιών και των καλλιεργειών σε αδιάβροχη επιφάνεια (IS). Η αδιαπέραστη κάλυψη της επιφάνειας μπορεί να μεταβάλλει τα περιβαλλοντικά συστήματα της γης με πολλούς τρόπους: περιοχές που καλύπτονται από αδιαπέραστη επιφάνεια μπορεί να έχουν ένα ξεχωριστό τοπικό κλίμα, κοινώς γνωστό ως "αστικό φαινόμενο θερμοπληξίας”, τα υδρολογικά συστήματα μπορεί να επηρεαστούν σοβαρά ως αποτέλεσμα της αυξημένης απορροής και της υποβάθμισης της ποιότητας των υδάτων και η αστικοποίηση συχνά συνδέεται με την απώλεια φυσικών τοπίων, οι οποίες ενδέχεται να έχουν δυσμενείς συνέπειες για τη βιοποικιλότητα και το οικοσύστημα. Επιπλέον, πρόσφατες μελέτες σχετικά με τις σχέσεις μεταξύ της αστικοποίησης και της παγκόσμιας περιβαλλοντικής αλλαγής έχουν δείξει ότι η αστικοποίηση μπορεί να έχει επιπτώσεις πέρα από το φυσικό αποτύπωμα αστικών περιοχών. Η επιφάνεια που έχει χαρακτηριστεί ως αδιάβροχη με βάση δεδομένα Landsat έχει χαρτογραφηθεί χρησιμοποιώντας ανάλυση φασματικού μίγματος και αλγόριθμους μηχανικής μάθησης όπως το δέντρο παλινδρόμησης. Όμως και οι δύο μέθοδοι έχουν βρεθεί να είναι ευαίσθητες σε εποχιακές και φαινολογικές μεταβολές στις εικόνες Landsat. Ως αποτέλεσμα, οι εποχιακές διακυμάνσεις της αδιάβροχης επιφάνειας θα μπορούσαν να οδηγήσουν σε μεροληψίες και σφάλματα στην εκτιμώμενη ISC όταν οι εικόνες για δύο ημερομηνίες αποκτώνται από διαφορετικές εποχές. Οι χρονοσειρές Landsat θα μπορούσαν να χρησιμοποιηθούν για να παράγουν πιο σταθερές εκτιμήσεις για τις αδιάβροχες επιφάνειες και επομένως ακριβέστερη ISC. Η συγκεκριμένη μελέτη στοχεύει κυρίως στην αποτύπωση της ISC μεταξύ 2000 και 2010 για την Ινδία, της οποίας το ποσοστό αστικοποίησης είναι ένα από τα ταχύτερα σε όλο τον κόσμο. Η Ινδία συμβάλλει σήμερα στο 10% περίπου του κόσμου του αστικού πληθυσμού. Ο αριθμός αυτός αναμένεται να αυξηθεί καθώς η οικονομική ανάπτυξη θα οδηγήσει στο μέλλον σε ακόμη μεγαλύτερη αστικοποίηση. Επιπλέον, αυτή η μελέτη στοχεύει στην παραγωγή ποσοτικών εκτιμήσεων για την ακρίβεια της χαρτογραφημένης ISC, καθώς και στα στατιστικά στοιχεία του κράτους της Ινδίας όσον αφορά την ISC.

ΜΕΘΟΔΟΛΟΓΙΑ

Η περιοχή η οποία ερευνάται είναι η Ινδία, της οποίας ο αστικός πληθυσμός έχει γνωρίσει μια αύξηση 31,8% και μία μείωση 24% της καλλιεργήσιμης γης. Το ζήτημα των εποχιακών αλλαγών στην αδιάβροχη επιφάνεια είναι ιδιαίτερα έντονο στην Ινδία. Λόγω της επίδρασης των μουσώνων και της χωρικής κατανομής των βροχοπτώσεων, η δυναμική της βλάστησης διαφέρει κατά μήκος της χώρας. Επίσης επηρεαζόμενες από τους μετεωρολογικούς κύκλους, οι φασματικές υπογραφές των γεωργικών εκτάσεων στην Ινδία αλλάζουν εποχιακά. Για παράδειγμα, κατά τη διάρκεια ξηρών μηνών, οι περιοχές αγρανάπαυσης συγχέονται συχνά με τις αδιαπέραστες επιφάνειες, οι οποίες είναι δύσκολο να διαχωριστούν με μεμονωμένα περιοδικά δεδομένα. Οι ερευνητές χρησιμοποιούν για την ανάπτυξη της μεθόδου τους δεδομένα παγκόσμιας γεωγραφικής ανάλυσης επιφάνειας Landsat. Mε τη χρήση αυτών των δεδομένων, η μέθοδος που αναπτύχθηκε βασίζεται σε μια παλινδρόμηση σε μορφή δένδρου για να χαρτογραφήσει την αδιαβροχη επιφάνεια (IS) για το 2010. Εκτός από τις έξι φασματικές ζώνες από τα δεδομένα του Landsat, στο μοντέλο συμπεριλήφθηκαν επίσης τέσσερις φασματικοί δείκτες (εικόνα 1).

Εικόνα 1. Υπολογισμός φασματικών δεικτών. Tα b1~b7 αντιστοιχούν σε δεδομένα Landsat.

Οι ερευνητές χρησιμοποίησαν τις πληροφορίες υφής για να ταξινομήσουν τις φωτογραφίες Landsat σε δυαδικές μάσκες της ανθρώπινης παρέμβασης και της οικοδομικής έκτασης, οι οποίες περιλαμβάνουν αδιαπέραστες και μη αδιαπέραστες επιφάνειες καλύψεως γης εντός των αστικών συνόρων και των μικρότερων οικισμών όπως πόλεις και χωριά. Η ταξινόμηση HBASE εκτελέστηκε χρησιμοποιώντας έναν αλγόριθμο μηχανικής μάθησης βασισμένος σε δέντρα αποφάσεων που δεν παράγει μόνο τις κατηγορίες για κάθε pixel αλλά και την πιθανότητα ενός εικονοστοιχείου να ανήκει σε μια από τις κατηγορίες. Για να παραχθεί υψηλή ποιότητα εκτιμήσεων για τα αδιάβροχα εδάφη του 2000, ο αλγόριθμος δένδρου παλινδρόμησης θα πρέπει να παρέχεται με δεδομένα για το έτος 2000. Αντί της συλλογής στοιχείων για το 2000, τα οποία δεν μπορούν να συλλεχθούν λόγω έλλειψης εικόνων υψηλής ανάλυσης, η προσέγγιση της μελέτης αυτής για την εκτίμηση της αδιαπέραστης κάλυψης επιφάνειας το 2000, ήταν μια επαναληπτική διαδικασία σχεδιασμένη για τον εντοπισμό εικονοστοιχείων των οποίων οι τιμές αδιάβροχης επιφάνειας δεν μεταβλήθηκαν μεταξύ του 2000 και του 2010. Χρησιμοποιώντας την πρόβλεψη του 2010 για αυτά τα εικονοστοιχεία ως δεδομένα, ένα δέντρο παλινδρόμησης αναπτύχθηκε για να χαρτογραφήσει τα αδιάβροχα εδάφη του 2000.

Εικόνα 2. Δέντρο παλινδρόμησης.

Η αρχική εκτίμηση του IS-2000 παράχθηκε με απλή εφαρμογή του δέντρου παλινδρόμησης που αναφέρθηκε προηγουμένως χρησιμοποιώντας για την απεικόνιση IS 2010 τις εικόνες Landsat του έτους 2000. Το μοντέλο ταξινόμησης HBASE 2010 εφαρμόστηκε επίσης στα δεδομένα Landsat του 2000 για την παραγωγή 2000 χαρτών HBASE. Δεδομένου ότι ο αλγόριθμος HBASE βασίζεται στην ταξινόμηση των χαρακτηριστικών υφής, τα οποία διαπιστώθηκε ότι δεν είναι ευαίσθητα στις φασματικές μεταβολές, αυτό το αποτέλεσμα χαρτογράφησης HBASE χρησιμοποιήθηκε στις αναλύσεις των ερευνητών. Προκειμένου να εκτιμηθεί η ακρίβεια του παραγόμενου συνόλου δεδομένων ISC, οι ερευνητές ανάπτυξαν μια μέθοδο για την επικύρωση των δεδομένων ISC χρησιμοποιώντας το Google Earth. Η επιλογή των σημείων επικύρωσης έγινε με βάση μια στρωματοποιημένη δειγματοληψία σε τρία στάδια. 1.Οι 500 πολυπληθέστερες ινδικές πόλεις κατατάχθηκαν σε επτά ομάδες: πάνω από 5 εκατομμύρια, 1 ~ 5 εκατομμύρια, 500 ~ 1000 χιλιάδες, 250 ~ 500 χιλιάδες, 100 ~ 250 χιλιάδες, 50 ~ 100 χιλιάδες, και λιγότερο από 50 χιλιάδες. Από κάθε ομάδα επιλέχθηκαν δύο πόλεις. Συνολικά επιλέχθηκαν 14 πόλεις που διανέμονται σε διάφορες περιοχές της Ινδίας. 2.Ανιχνεύθηκαν 18 φωτογραφίες Landsat μέσα από αυτές τις πόλεις. 3.Για κάθε φωτογραφία Landsat, επιλέχθηκαν τυχαία 50 pixel από κάθε μία από αυτές τις τέσσερις ομάδες: ISC = 0, 0<ISC<25%, 25%<ISC<50%, ISC>50%. Στη συνέχεια, οι συγγραφείς πραγματοποίησαν αναζήτηση στο ιστορικό αρχείο εικόνων Google Earth για να βρουν δύο εικόνες πιο κοντά στις ημερομηνίες απόκτησης του 2000 και 2010 για καθένα από τα 3600 σημεία δειγματοληψίας. Για να χρησιμοποιηθούν ως σημεία επικύρωσης ISC, πρέπει να πληρούνται οι ακόλουθοι κανόνες: •Η διαφορά μεταξύ των ημερομηνιών απόκτησης εικόνων του Google Earth και Landsat να είναι εντός δύο ετών (730 ημέρες) για το 2000 και το 2010. •Να μην υπάρχουν σύννεφα / σκιές στην εικόνα Google Earth και για τις δύο ημερομηνίες. •Να μην υπάρχουν προφανή σφάλματα κατάργησης εγγραφής μεταξύ δύο εικόνων του Google Earth.

ΑΠΟΤΕΛΕΣΜΑΤΑ

Εικόνα 2. Παραδείγματα αδιάβροχων επιφανειών εδάφους.

Οι ερευνητές αφότου διατύπωσαν τη μεθοδολογία που χρησιμοποιήθηκε, προχώρησαν σε κάποια παραδείγματα για να εξετάσουν στην πράξη κατά πόσο είναι σωστά τα όσα διατύπωσαν. Σε γενικές γραμμές η εφαρμογή έδειξε ότι η απόδοση του εργαλείου ήταν καλή, αν και εντοπίστηκαν κάποια μικρά λάθη, όπως για παράδειγμα ότι οι περιοχές με ορυχεία αποτυπώνονται ως αδιάβροχες επιφάνειες. Στην εικόνα 3, ο χώρος (a) είναι μια περιοχή που μετατράπηκε από αγροτικό τομέα σε επιφάνεια με μεγάλη αδιαπέραστη πυκνότητα. Το 2000 το αδιάβροχο έδαφος χαρτογραφήθηκε στο κεντρικό εικονοστοιχείο ως 0% σωστά και το 2010 χαρτογραφήθηκε σωστά ως 95% αδιαπέραστο. Το (b) δείχνει μια γεωργική περιοχή που μετατρέπεται σε αδιαπέραστη επιφάνεια χαμηλής έως μέσης πυκνότητας. Το προϊόν ISC προέβλεψε σε ένα ποσοστό 44% αύξηση της αδιαπέραστης επιφάνειας κάλυψης. Το (c) δείχνει μια γυμνή περιοχή που άρχισε να αναπτύσσεται πριν το 2000 και συνέχισε να μετατρέπεται σε αδιαπέραστη κάλυψη επιφάνειας. Το χαρτογραφημένο ISC είναι 90%. Το (d) δείχνει μια περιοχή μέσης πυκνότητας που επεκτάθηκε με τη κατασκευή νέων πολυκατοικιών. Οι νεόκτιστες περιοχές χαρτογραφήθηκαν ως πάνω από 90% ISC. Το σχήμα (e) δείχνει ότι χαρτογραφήθηκε ένα νέο αεροδρόμιο επιτυχώς. Θα πρέπει να τονιστεί επίσης, ότι όπως φαίνεται από τις οπτικές εκτιμήσεις, τις ποσοτικές αξιολογήσεις και τη χρήση παραδειγμάτων των αναλυτών η χαρτογράφηση των αδιάβροχων επιφανειών εδάφους ο αλγόριθμος χαρτογράφησης πέτυχε υψηλό επίπεδο ακρίβειας. Ωστόσο, τα τελικά προϊόντα ISC δείχνουν μια μεροληψία προς την υπερεκτίμηση ως αποτέλεσμα της υποτιμημένης IS του 2000 και της υπερεκτίμησης το 2010. Εφαρμόζοντας όμως τη διαδικασία της επαναληπτικής μεθόδου πρόβλεψης αυτή η μεροληψία αντιμετωπίζεται και επιτυγχάνεται περισσότερη ακρίβεια στα αποτελέσματα.

ΣΥΜΠΕΡΑΣΜΑΤΑ

Μια προσέγγιση επαναληπτικής πρόβλεψης (ITP) αναπτύχθηκε για τη χαρτογράφηση των μεταβολών αδιάβροχων επιφανειών (ISC). Η αδιαπέραστη επιφάνεια του 2010 χαρτογραφήθηκε χρησιμοποιώντας την παλινδρόμηση με βάση τη μέθοδο δέντρου. Χωρίς πρόσθετα δεδομένα κατάρτισης που συλλέχθηκαν για την εποχή του 2000, η αδιάβροχη επιφάνεια του 2000 χαρτογραφήθηκε από τα δεδομένα του 2010 που δημιουργήθηκαν αυτόματα με βάση μια μάσκα. Η μέθοδος ITP εφαρμόστηκε στις εικόνες Landsat για να παραχθεί ένα προϊόν ISC για τα έτη 2000-2010 για την Ινδία. Αυτή η μελέτη κατέδειξε την αποτελεσματικότητα της προσέγγισης ITP για τη χαρτογράφηση του ISC με τη χρήση δεδομένων που παρουσίαζαν φασματικές διαφορές μεταξύ δύο ημερομηνιών. Τέτοιες φασματικές διαφορές μπορεί να αποδοθούν στις διαφορές στις ημερομηνίες απόκτησης, στο φωτισμό και στη γεωμετρία προβολής, καθώς και στη φαινολογία της βλάστησης. Με την ικανότητα να χειρίζεται τη φασματική ασυνέπεια, η προσέγγιση ITP μπορεί να είναι χρήσιμη και για τη κάλυψη και άλλων τύπων γης μετά από μικρές προσαρμογές.

Προσωπικά εργαλεία