Συζήτηση βοήθειας:Περιεχόμενα

Από RemoteSensing Wiki

(Διαφορές μεταξύ αναθεωρήσεων)
Μετάβαση σε: πλοήγηση, αναζήτηση
Γραμμή 1: Γραμμή 1:
-
"Remote Sensing in Environmental Justice Research—A Review"  
+
"Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review"  
-
Το άρθρο των Matthias Weigand, Michael Wurm, Stefan Dech και Hannes Taubenböck, που δημοσιεύτηκε στο International Journal of Geo-Information, αποτελεί μία ανασκόπηση σχετικά με τη χρήση της τηλεπισκόπησης (remote sensing) στην έρευνα περιβαλλοντικής δικαιοσύνης. Οι συγγραφείς διερευνούν τον ρόλο των δορυφορικών δεδομένων και των γεωχωρικών τεχνικών στην ανάλυση της περιβαλλοντικής ανισότητας, δηλαδή της άνισης κατανομής περιβαλλοντικών επιβαρύνσεων σε κοινωνικές ομάδες με διαφορετικό κοινωνικοοικονομικό επίπεδο.
+
Το άρθρο των Lei Ma, Yu Liu, Xueliang Zhang, Yuanxin Ye, Gaofei Yin και Brian Alan Johnson, που δημοσιεύτηκε στο ISPRS Journal of Photogrammetry and Remote Sensing, αποτελεί μια συστηματική επισκόπηση της χρήσης των αλγορίθμων βαθιάς μάθησης (Deep Learning - DL) στις εφαρμογές τηλεπισκόπησης (Remote Sensing). Οι συγγραφείς αναλύουν περισσότερες από 200 επιστημονικές δημοσιεύσεις των τελευταίων ετών και εξετάζουν τις κύριες DL τεχνικές που χρησιμοποιούνται στη δορυφορική απεικόνιση, καθώς και τις προκλήσεις και προοπτικές για μελλοντική έρευνα.
-
 
+
-
Η μελέτη υπογραμμίζει ότι η έκθεση σε περιβαλλοντικούς παράγοντες, όπως η ατμοσφαιρική ρύπανση, ο θόρυβος, η έλλειψη πράσινων χώρων και οι θερμικές νησίδες, επηρεάζει δυσανάλογα τις κοινωνικές ομάδες με χαμηλότερο κοινωνικοοικονομικό επίπεδο. Οι συγγραφείς αναδεικνύουν την ανάγκη χρήσης δεδομένων τηλεπισκόπησης για να καλυφθούν τα κενά στις υφιστάμενες μεθοδολογίες, οι οποίες συχνά χρησιμοποιούν δεδομένα που δεν έχουν χωρική λεπτομέρεια («essentially aspatial data»), οδηγώντας σε ανακριβή συμπεράσματα.
+
Μεθοδολογία και Θεωρητικό Πλαίσιο
Μεθοδολογία και Θεωρητικό Πλαίσιο
-
Η μελέτη αναλύει πώς η τηλεπισκόπηση μπορεί να χρησιμοποιηθεί για:
+
Οι συγγραφείς διεξήγαγαν μια μετα-ανάλυση (meta-analysis) που περιλαμβάνει:
 +
 
 +
Εξέταση των τύπων εικόνων τηλεπισκόπησης που χρησιμοποιήθηκαν (υψηλής, μέτριας και χαμηλής ανάλυσης).
 +
Ανάλυση των DL αλγορίθμων που εφαρμόστηκαν (CNN, RNN, Autoencoders, GANs).
 +
Κατηγοριοποίηση των εφαρμογών βαθιάς μάθησης στην τηλεπισκόπηση, συμπεριλαμβανομένων των τεχνικών ταξινόμησης χρήσης γης (LULC), ανίχνευσης αντικειμένων, συγχώνευσης εικόνων και ανάλυσης σκηνών.
 +
Αξιολόγηση της ακρίβειας των DL μοντέλων και σύγκρισή τους με παραδοσιακούς αλγορίθμους (Support Vector Machines - SVM, Random Forest - RF).
 +
 
 +
 
 +
Βασικά Ευρήματα και Εφαρμογές
 +
 
 +
Η ανάλυση του άρθρου επικεντρώνεται σε έξι βασικές εφαρμογές της βαθιάς μάθησης στην τηλεπισκόπηση:
 +
 
 +
1. Συγχώνευση εικόνων (Image Fusion)
 +
 
 +
Η συγχώνευση εικόνων αποσκοπεί στη δημιουργία εικόνων υψηλότερης ανάλυσης συνδυάζοντας δεδομένα από πολλαπλές πηγές. Οι συγγραφείς επισημαίνουν ότι:
 +
 
 +
Τα Convolutional Neural Networks (CNNs) έχουν αντικαταστήσει τις παραδοσιακές μεθόδους συγχώνευσης εικόνων.
 +
Η χρήση Generative Adversarial Networks (GANs) μπορεί να βελτιώσει την ποιότητα των συγχωνευμένων εικόνων, ειδικά στη σύντηξη δεδομένων πολυφασματικών και υπερφασματικών εικόνων.
 +
 
 +
2. Ταξινόμηση χρήσης και κάλυψης γης (LULC Classification)
 +
 
 +
Η βαθιά μάθηση χρησιμοποιείται για την ανάλυση της κάλυψης γης σε μεγάλες κλίμακες. Τα ευρήματα περιλαμβάνουν:
 +
 
 +
Τα CNNs υπερέχουν στις ταξινομήσεις υψηλής ανάλυσης, ενώ τα Recurrent Neural Networks (RNNs) είναι πιο αποδοτικά στη χρονοσειριακή ανάλυση δεδομένων Landsat και Sentinel.
 +
Η χρήση GANs μπορεί να αντιμετωπίσει το πρόβλημα της έλλειψης ετικετοποιημένων δεδομένων, βελτιώνοντας την εκπαίδευση των δικτύων.
 +
 
 +
3. Ανίχνευση αντικειμένων (Object Detection)
 +
 
 +
Η βαθιά μάθηση επιτρέπει την αυτόματη ανίχνευση αντικειμένων σε δορυφορικές εικόνες. Οι βασικές εφαρμογές περιλαμβάνουν:
 +
 
 +
Ανίχνευση αεροσκαφών, οχημάτων και πλοίων σε υψηλής ανάλυσης εικόνες.
 +
Χρήση CNNs για τον εντοπισμό αστικών περιοχών και υποδομών.
 +
Βελτιώσεις μέσω ενσωμάτωσης δεδομένων LiDAR και δορυφορικών εικόνων.
 +
 
 +
4. Ανάλυση Σκηνών (Scene Classification)
-
Χαρτογράφηση περιβαλλοντικών επιβαρύνσεων μέσω δορυφορικών δεδομένων υψηλής ανάλυσης.
+
Η βαθιά μάθηση χρησιμοποιείται για τη χαρτογράφηση και κατηγοριοποίηση αστικών και φυσικών περιβαλλόντων. Τα αποτελέσματα δείχνουν ότι:
-
Διασύνδεση των περιβαλλοντικών δεδομένων με κοινωνικοοικονομικές πληροφορίες (π.χ. στοιχεία απογραφών, δημογραφικά δεδομένα).
+
-
Μοντελοποίηση της επίδρασης της περιβαλλοντικής ανισότητας στην υγεία με τη χρήση τεχνικών GIS και γεωστατιστικής ανάλυσης.
+
-
Οι συγγραφείς εξετάζουν πώς διαφορετικές κοινωνικές ομάδες εκτίθενται σε περιβαλλοντικές απειλές και πώς αυτό μπορεί να μετρηθεί με τηλεπισκοπικά δεδομένα και αλγορίθμους ανάλυσης μεγάλης κλίμακας.
+
-
Κύρια Ευρήματα και Αναλύσεις
+
Τα CNNs επιτυγχάνουν ακρίβεια έως 95% στην ταξινόμηση σκηνών.
 +
Τα προεκπαιδευμένα νευρωνικά δίκτυα (transfer learning) βελτιώνουν σημαντικά την απόδοση, ιδιαίτερα όταν υπάρχουν λίγα δεδομένα εκπαίδευσης.
-
1. Περιβαλλοντικοί Παράγοντες και Επιδράσεις στην Υγεία
+
5. Αλλαγές Χρήσης Γης και Ανίχνευση Μεταβολών (Change Detection)
-
Οι συγγραφείς κατηγοριοποιούν τους βασικούς περιβαλλοντικούς παράγοντες που επηρεάζουν την υγεία και μπορούν να χαρτογραφηθούν μέσω τηλεπισκόπησης:
+
Η τηλεπισκόπηση χρησιμοποιείται για την παρακολούθηση των περιβαλλοντικών αλλαγών και της επέκτασης των αστικών περιοχών. Τα ευρήματα περιλαμβάνουν:
-
Πράσινοι χώροι (Green space): Η έλλειψη πρόσβασης σε πράσινους χώρους έχει συσχετιστεί με υψηλότερα επίπεδα άγχους και καρδιαγγειακών νοσημάτων. Τα δεδομένα Landsat και Sentinel-2 μπορούν να χαρτογραφήσουν τη διαθεσιμότητα αστικού πρασίνου.
+
Τα Long Short-Term Memory (LSTM) και RNN μοντέλα υπερέχουν στην ανίχνευση μεταβολών, καθώς επεξεργάζονται δεδομένα χρονοσειρών.
-
Ατμοσφαιρική ρύπανση (Air pollution): Τα τηλεπισκοπικά δεδομένα από MODIS και Sentinel-5P μπορούν να χρησιμοποιηθούν για την εκτίμηση των συγκεντρώσεων PM2.5 και NO₂ σε μεγάλες αστικές περιοχές.
+
Η συνδυασμένη χρήση πολυφασματικών και ρανταρικών δεδομένων (SAR) με DL βελτιώνει την ακρίβεια ανίχνευσης.
-
Θόρυβος (Noise pollution): Ο θόρυβος από οδική κυκλοφορία και βιομηχανικές δραστηριότητες έχει συσχετιστεί με υπέρταση και αυξημένα επίπεδα στρες. Ενώ δεν μπορεί να μετρηθεί άμεσα με τηλεπισκόπηση, η χρήση γεωχωρικών αναλύσεων μπορεί να δημιουργήσει χωρικά μοντέλα πρόβλεψης.
+
-
Θερμικές νησίδες (Urban Heat Islands - UHI): Οι αστικές περιοχές διατηρούν υψηλότερες θερμοκρασίες λόγω αδιαπέραστων επιφανειών (άσφαλτος, σκυρόδεμα), επιδεινώνοντας την υγεία των ευπαθών ομάδων. Τα δεδομένα Landsat-8 και MODIS μπορούν να χρησιμοποιηθούν για τη χαρτογράφηση θερμικών νησίδων.
+
-
2. Ο Ρόλος της Κοινωνικοοικονομικής Κατάστασης
+
6. Ανάλυση Υψηλής Χωρικής Ανάλυσης (Super-Resolution Mapping)
-
Η μελέτη εξετάζει πώς κοινωνικοοικονομικοί δείκτες (εισόδημα, εκπαίδευση, φυλή, επαγγελματική απασχόληση) σχετίζονται με την περιβαλλοντική έκθεση. Οι χαμηλότερες κοινωνικοοικονομικές τάξεις συχνά κατοικούν σε περιοχές με:
+
Η βαθιά μάθηση επιτρέπει τη βελτίωση της ανάλυσης εικόνων χαμηλής ανάλυσης. Τα αποτελέσματα δείχνουν ότι:
-
Υψηλή ατμοσφαιρική ρύπανση λόγω εγγύτητας σε βιομηχανικές ζώνες ή αυτοκινητοδρόμους.
+
GANs και CNNs μπορούν να δημιουργήσουν εικόνες υψηλότερης ανάλυσης από δεδομένα χαμηλής ανάλυσης.
-
Μικρή πρόσβαση σε πάρκα και πράσινους χώρους, περιορίζοντας τα οφέλη της φυσικής δραστηριότητας.
+
Οι τεχνικές super-resolution βοηθούν στην ακριβέστερη χαρτογράφηση αστικών και αγροτικών περιοχών.
-
Υψηλή ηχορύπανση από πυκνή κυκλοφορία και θορυβώδεις περιοχές.
+
-
Οι συγγραφείς αναφέρουν ότι η τηλεπισκόπηση μπορεί να καλύψει κενά σε προηγούμενες μελέτες που βασίζονται σε αποσπασματικά ή ελλιπή κοινωνικά δεδομένα, βοηθώντας στην καλύτερη μοντελοποίηση των περιβαλλοντικών ανισοτήτων.
+
-
3. Μεθοδολογικές Προκλήσεις και Προτεινόμενες Βελτιώσεις
 
-
Η μελέτη εξετάζει ζητήματα όπως:
+
Κύριες Προκλήσεις και Μελλοντικές Τάσεις
-
Το Πρόβλημα των Μεταβαλλόμενων Χωρικών Οντοτήτων (Modifiable Areal Unit Problem - MAUP): Τα δεδομένα κοινωνικοοικονομικής ανάλυσης συχνά παρουσιάζουν στρεβλώσεις λόγω εσφαλμένων ορίων ζωνών (π.χ. απογραφικά τετράγωνα που δεν αντιστοιχούν σε πραγματικά αστικά όρια).
+
Οι συγγραφείς τονίζουν ότι παρά τις σημαντικές προόδους, η εφαρμογή της βαθιάς μάθησης στην τηλεπισκόπηση αντιμετωπίζει αρκετές προκλήσεις:
-
Το Οικολογικό Σφάλμα (Ecological Fallacy): Η χρήση υπερβολικά γενικευμένων δεδομένων (π.χ. μέσες τιμές εισοδήματος για μια ολόκληρη πόλη) μπορεί να οδηγήσει σε λανθασμένα συμπεράσματα.
+
-
Ανάγκη συνδυασμού δεδομένων τηλεπισκόπησης με κοινωνικές έρευνες: Οι συγγραφείς προτείνουν την ενσωμάτωση δορυφορικών δεδομένων με δημογραφικά και οικονομικά στοιχεία για πιο ακριβείς αναλύσεις.
+
 +
Έλλειψη δεδομένων εκπαίδευσης: Οι DL αλγόριθμοι απαιτούν μεγάλες ποσότητες ετικετοποιημένων δεδομένων, τα οποία είναι δύσκολο να αποκτηθούν.
 +
Υπολογιστικό κόστος: Η χρήση DL απαιτεί μεγάλη υπολογιστική ισχύ, καθιστώντας την ανάλυση δύσκολη για αναπτυσσόμενες χώρες και μικρότερα ερευνητικά κέντρα.
 +
Επεξήγηση των αποτελεσμάτων (Explainability): Τα DL μοντέλα συχνά λειτουργούν ως «μαύρα κουτιά», καθιστώντας δύσκολη την ερμηνεία των αποτελεσμάτων.
 +
Συνδυασμός δεδομένων από διαφορετικές πηγές: Η ενοποίηση δεδομένων από διαφορετικούς αισθητήρες (π.χ. πολυφασματικά, ρανταρικά, LiDAR) παραμένει πρόκληση.
-
Συμπεράσματα και Προτάσεις για Μελλοντική Έρευνα
+
Για το μέλλον, οι συγγραφείς προτείνουν:
-
Το άρθρο καταλήγει στο ότι η τηλεπισκόπηση αποτελεί ένα ισχυρό εργαλείο για τη μελέτη της περιβαλλοντικής δικαιοσύνης, καθώς επιτρέπει:
+
Χρήση GANs και μεταφοράς μάθησης (transfer learning) για τη μείωση της ανάγκης εκπαίδευσης με μεγάλες βάσεις δεδομένων.
 +
Ανάπτυξη ερμηνεύσιμων DL μοντέλων που θα επιτρέπουν καλύτερη κατανόηση των αποφάσεων του αλγορίθμου.
 +
Δημιουργία προτύπων για benchmarking DL εφαρμογών στην τηλεπισκόπηση.
-
Λεπτομερή χαρτογράφηση περιβαλλοντικών ανισοτήτων σε μεγάλη κλίμακα.
 
-
Ανάλυση των επιπτώσεων των περιβαλλοντικών παραγόντων στην ανθρώπινη υγεία.
 
-
Δημιουργία μοντέλων πρόβλεψης που θα βοηθήσουν στη λήψη πολιτικών αποφάσεων για τη μείωση των ανισοτήτων.
 
-
Οι συγγραφείς προτείνουν:
+
Συμπέρασμα
-
Ενσωμάτωση δορυφορικών δεδομένων με κοινωνικοοικονομικές βάσεις δεδομένων.
+
Το άρθρο παρέχει μια συνολική και εις βάθος ανάλυση της χρήσης βαθιάς μάθησης στην τηλεπισκόπηση, αναδεικνύοντας τις εφαρμογές, τα οφέλη και τις προκλήσεις της τεχνολογίας αυτής. Η έρευνα υποστηρίζει ότι η DL αποτελεί την πιο καινοτόμο και αποδοτική προσέγγιση για την ανάλυση δορυφορικών εικόνων, με σημαντικές προοπτικές για τη χαρτογράφηση περιβαλλοντικών αλλαγών και την ανάλυση αστικών δεδομένων.
-
Βελτίωση της ανάλυσης δεδομένων μέσω αλγορίθμων AI και μηχανικής μάθησης.
+
-
Ανάπτυξη διεθνών προτύπων για τη χρήση τηλεπισκόπησης στην περιβαλλοντική δικαιοσύνη.
+
-
Το άρθρο προσφέρει σημαντικές πληροφορίες για τη βελτίωση της περιβαλλοντικής έρευνας και την εφαρμογή νέων τεχνολογιών για την καταπολέμηση των ανισοτήτων στην πρόσβαση σε υγιές περιβάλλον.
+

Αναθεώρηση της 14:55, 16 Φεβρουαρίου 2025

"Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review"


Το άρθρο των Lei Ma, Yu Liu, Xueliang Zhang, Yuanxin Ye, Gaofei Yin και Brian Alan Johnson, που δημοσιεύτηκε στο ISPRS Journal of Photogrammetry and Remote Sensing, αποτελεί μια συστηματική επισκόπηση της χρήσης των αλγορίθμων βαθιάς μάθησης (Deep Learning - DL) στις εφαρμογές τηλεπισκόπησης (Remote Sensing). Οι συγγραφείς αναλύουν περισσότερες από 200 επιστημονικές δημοσιεύσεις των τελευταίων ετών και εξετάζουν τις κύριες DL τεχνικές που χρησιμοποιούνται στη δορυφορική απεικόνιση, καθώς και τις προκλήσεις και προοπτικές για μελλοντική έρευνα.


Μεθοδολογία και Θεωρητικό Πλαίσιο

Οι συγγραφείς διεξήγαγαν μια μετα-ανάλυση (meta-analysis) που περιλαμβάνει:

Εξέταση των τύπων εικόνων τηλεπισκόπησης που χρησιμοποιήθηκαν (υψηλής, μέτριας και χαμηλής ανάλυσης). Ανάλυση των DL αλγορίθμων που εφαρμόστηκαν (CNN, RNN, Autoencoders, GANs). Κατηγοριοποίηση των εφαρμογών βαθιάς μάθησης στην τηλεπισκόπηση, συμπεριλαμβανομένων των τεχνικών ταξινόμησης χρήσης γης (LULC), ανίχνευσης αντικειμένων, συγχώνευσης εικόνων και ανάλυσης σκηνών. Αξιολόγηση της ακρίβειας των DL μοντέλων και σύγκρισή τους με παραδοσιακούς αλγορίθμους (Support Vector Machines - SVM, Random Forest - RF).


Βασικά Ευρήματα και Εφαρμογές

Η ανάλυση του άρθρου επικεντρώνεται σε έξι βασικές εφαρμογές της βαθιάς μάθησης στην τηλεπισκόπηση:

1. Συγχώνευση εικόνων (Image Fusion)

Η συγχώνευση εικόνων αποσκοπεί στη δημιουργία εικόνων υψηλότερης ανάλυσης συνδυάζοντας δεδομένα από πολλαπλές πηγές. Οι συγγραφείς επισημαίνουν ότι:

Τα Convolutional Neural Networks (CNNs) έχουν αντικαταστήσει τις παραδοσιακές μεθόδους συγχώνευσης εικόνων. Η χρήση Generative Adversarial Networks (GANs) μπορεί να βελτιώσει την ποιότητα των συγχωνευμένων εικόνων, ειδικά στη σύντηξη δεδομένων πολυφασματικών και υπερφασματικών εικόνων.

2. Ταξινόμηση χρήσης και κάλυψης γης (LULC Classification)

Η βαθιά μάθηση χρησιμοποιείται για την ανάλυση της κάλυψης γης σε μεγάλες κλίμακες. Τα ευρήματα περιλαμβάνουν:

Τα CNNs υπερέχουν στις ταξινομήσεις υψηλής ανάλυσης, ενώ τα Recurrent Neural Networks (RNNs) είναι πιο αποδοτικά στη χρονοσειριακή ανάλυση δεδομένων Landsat και Sentinel. Η χρήση GANs μπορεί να αντιμετωπίσει το πρόβλημα της έλλειψης ετικετοποιημένων δεδομένων, βελτιώνοντας την εκπαίδευση των δικτύων.

3. Ανίχνευση αντικειμένων (Object Detection)

Η βαθιά μάθηση επιτρέπει την αυτόματη ανίχνευση αντικειμένων σε δορυφορικές εικόνες. Οι βασικές εφαρμογές περιλαμβάνουν:

Ανίχνευση αεροσκαφών, οχημάτων και πλοίων σε υψηλής ανάλυσης εικόνες. Χρήση CNNs για τον εντοπισμό αστικών περιοχών και υποδομών. Βελτιώσεις μέσω ενσωμάτωσης δεδομένων LiDAR και δορυφορικών εικόνων.

4. Ανάλυση Σκηνών (Scene Classification)

Η βαθιά μάθηση χρησιμοποιείται για τη χαρτογράφηση και κατηγοριοποίηση αστικών και φυσικών περιβαλλόντων. Τα αποτελέσματα δείχνουν ότι:

Τα CNNs επιτυγχάνουν ακρίβεια έως 95% στην ταξινόμηση σκηνών. Τα προεκπαιδευμένα νευρωνικά δίκτυα (transfer learning) βελτιώνουν σημαντικά την απόδοση, ιδιαίτερα όταν υπάρχουν λίγα δεδομένα εκπαίδευσης.

5. Αλλαγές Χρήσης Γης και Ανίχνευση Μεταβολών (Change Detection)

Η τηλεπισκόπηση χρησιμοποιείται για την παρακολούθηση των περιβαλλοντικών αλλαγών και της επέκτασης των αστικών περιοχών. Τα ευρήματα περιλαμβάνουν:

Τα Long Short-Term Memory (LSTM) και RNN μοντέλα υπερέχουν στην ανίχνευση μεταβολών, καθώς επεξεργάζονται δεδομένα χρονοσειρών. Η συνδυασμένη χρήση πολυφασματικών και ρανταρικών δεδομένων (SAR) με DL βελτιώνει την ακρίβεια ανίχνευσης.

6. Ανάλυση Υψηλής Χωρικής Ανάλυσης (Super-Resolution Mapping)

Η βαθιά μάθηση επιτρέπει τη βελτίωση της ανάλυσης εικόνων χαμηλής ανάλυσης. Τα αποτελέσματα δείχνουν ότι:

GANs και CNNs μπορούν να δημιουργήσουν εικόνες υψηλότερης ανάλυσης από δεδομένα χαμηλής ανάλυσης. Οι τεχνικές super-resolution βοηθούν στην ακριβέστερη χαρτογράφηση αστικών και αγροτικών περιοχών.


Κύριες Προκλήσεις και Μελλοντικές Τάσεις

Οι συγγραφείς τονίζουν ότι παρά τις σημαντικές προόδους, η εφαρμογή της βαθιάς μάθησης στην τηλεπισκόπηση αντιμετωπίζει αρκετές προκλήσεις:

Έλλειψη δεδομένων εκπαίδευσης: Οι DL αλγόριθμοι απαιτούν μεγάλες ποσότητες ετικετοποιημένων δεδομένων, τα οποία είναι δύσκολο να αποκτηθούν. Υπολογιστικό κόστος: Η χρήση DL απαιτεί μεγάλη υπολογιστική ισχύ, καθιστώντας την ανάλυση δύσκολη για αναπτυσσόμενες χώρες και μικρότερα ερευνητικά κέντρα. Επεξήγηση των αποτελεσμάτων (Explainability): Τα DL μοντέλα συχνά λειτουργούν ως «μαύρα κουτιά», καθιστώντας δύσκολη την ερμηνεία των αποτελεσμάτων. Συνδυασμός δεδομένων από διαφορετικές πηγές: Η ενοποίηση δεδομένων από διαφορετικούς αισθητήρες (π.χ. πολυφασματικά, ρανταρικά, LiDAR) παραμένει πρόκληση.

Για το μέλλον, οι συγγραφείς προτείνουν:

Χρήση GANs και μεταφοράς μάθησης (transfer learning) για τη μείωση της ανάγκης εκπαίδευσης με μεγάλες βάσεις δεδομένων. Ανάπτυξη ερμηνεύσιμων DL μοντέλων που θα επιτρέπουν καλύτερη κατανόηση των αποφάσεων του αλγορίθμου. Δημιουργία προτύπων για benchmarking DL εφαρμογών στην τηλεπισκόπηση.


Συμπέρασμα

Το άρθρο παρέχει μια συνολική και εις βάθος ανάλυση της χρήσης βαθιάς μάθησης στην τηλεπισκόπηση, αναδεικνύοντας τις εφαρμογές, τα οφέλη και τις προκλήσεις της τεχνολογίας αυτής. Η έρευνα υποστηρίζει ότι η DL αποτελεί την πιο καινοτόμο και αποδοτική προσέγγιση για την ανάλυση δορυφορικών εικόνων, με σημαντικές προοπτικές για τη χαρτογράφηση περιβαλλοντικών αλλαγών και την ανάλυση αστικών δεδομένων.

Προσωπικά εργαλεία