Διαχωρισμός των δομημένου περιοχών από τη γυμνή γη σε μεσογειακές πόλεις χρησιμοποιώντας εικόνες Sentinel-2A.

Από RemoteSensing Wiki

(Διαφορές μεταξύ αναθεωρήσεων)
Μετάβαση σε: πλοήγηση, αναζήτηση
 
(7 ενδιάμεσες αναθεωρήσεις δεν εμφανίζονται.)
Γραμμή 1: Γραμμή 1:
-
Add Your Content Here
 
-
 
  [[category:Εκτίμηση καταλληλότητας της γης για διάφορες εφαρμογές]]
  [[category:Εκτίμηση καταλληλότητας της γης για διάφορες εφαρμογές]]
 +
 +
'''Διαχωρισμός των δομημένων περιοχών από τη γυμνή γη σε μεσογειακές πόλεις χρησιμοποιώντας εικόνες Sentinel-2A.'''
'''Πρωτότυπος τίτλος:''' ''Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery''
'''Πρωτότυπος τίτλος:''' ''Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery''
Γραμμή 9: Γραμμή 9:
'''Συγγραφέας: '''Sajid Pareeth, Poolad Karimi, Mojtaba Shafiei, Charlotte De Fraiture
'''Συγγραφέας: '''Sajid Pareeth, Poolad Karimi, Mojtaba Shafiei, Charlotte De Fraiture
-
[[Εικόνα:abasiou_wiki4_sxhma2.JPG | thumb| right|'''Σχήμα 2.'''
+
'''Σύνδεσμος πρωτότυπου κειμένου:''' [https://www.mdpi.com/2072-4292/11/3/345/htm]
-
Φασματικές καμπύλες ανάκλασης διαφορετικών τύπων κάλυψης/χρήσης γης (LCU), σύμφωνα με τις ζώνες εικόνας Sentinel-2A (κορυφαίες τιμές ανάκλασης ατμόσφαιρας που που προέρχονται από δορυφορική εικόνα ανάλυσης 12 bit) ]]
+
'''Λέξεις-Κλειδιά: ''' προσέγγιση πολλαπλών δεικτών, χαρτογράφηση χερσαίας κάλυψης/χρήσης, Ταξινόμηση SVM, γυμνή γη, δομημένη περιοχή
[[Εικόνα:abasiou_wiki4_sxhma2.JPG | thumb| right|'''Σχήμα 2.'''
[[Εικόνα:abasiou_wiki4_sxhma2.JPG | thumb| right|'''Σχήμα 2.'''
Γραμμή 33: Γραμμή 33:
  Αποτελέσματα ταξινόμησης:α) NDBI· β)BUI· γ)BAEI· δ) NBI· ε)VIBI· στ)IBI· ζ) περιβάλλον εργασίας χρήστη· η)BSI· i)σύνολα πολλαπλών ευρετηρίων που βασίζονται σε NDTI· και(ι)πρωτότυπες φασματικές ζώνες. ]]
  Αποτελέσματα ταξινόμησης:α) NDBI· β)BUI· γ)BAEI· δ) NBI· ε)VIBI· στ)IBI· ζ) περιβάλλον εργασίας χρήστη· η)BSI· i)σύνολα πολλαπλών ευρετηρίων που βασίζονται σε NDTI· και(ι)πρωτότυπες φασματικές ζώνες. ]]
-
'''Σύνδεσμος πρωτότυπου κειμένου:''' [https://www.mdpi.com/2072-4292/11/3/345/htm]
 
'''Εισαγωγή'''
'''Εισαγωγή'''

Παρούσα αναθεώρηση της 07:25, 3 Φεβρουαρίου 2022


Διαχωρισμός των δομημένων περιοχών από τη γυμνή γη σε μεσογειακές πόλεις χρησιμοποιώντας εικόνες Sentinel-2A.

Πρωτότυπος τίτλος: Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery

Σχήμα 1. Χάρτης θέσης της κύριας περιοχής μελέτης και των περιοχών δοκιμής (Χάρτης χώρας από ESRI©, Καλιφόρνια, ΗΠΑ, πιο προσεκτική ματιά από το φυσικό σύνθετο χρώμα του Sentinel-2A).

Συγγραφέας: Sajid Pareeth, Poolad Karimi, Mojtaba Shafiei, Charlotte De Fraiture

Σύνδεσμος πρωτότυπου κειμένου: [1]

Λέξεις-Κλειδιά: προσέγγιση πολλαπλών δεικτών, χαρτογράφηση χερσαίας κάλυψης/χρήσης, Ταξινόμηση SVM, γυμνή γη, δομημένη περιοχή

Σχήμα 2. Φασματικές καμπύλες ανάκλασης διαφορετικών τύπων κάλυψης/χρήσης γης (LCU), σύμφωνα με τις ζώνες εικόνας Sentinel-2A (κορυφαίες τιμές ανάκλασης ατμόσφαιρας που που προέρχονται από δορυφορική εικόνα ανάλυσης 12 bit)
Σχήμα 3. Εικόνες του (α) Sentinel-2A RGB; β) ομαλοποιημένος δείκτης δημιουργίας διαφορών (NDBI)· γ) δείκτης δημιουργίας (BUI)· δ) δείκτης εξόρυξης δομημένης έκτασης (BAEI)· ε) νέος δείκτης δημιουργίας (NBI)· στ) δείκτης βλάστησης (VIBI)· ζ) δείκτης που βασίζεται σε ευρετήριο (IBI)· η) αστικός δείκτης (UI)· και i) γυμνό δείκτη εδάφους (BSI).
Σχήμα 4. Οι εικόνες του (α) του Δείκτη Ομαλοποιημένης Διαφοράς (NDTI) και(β) ενός υποσυνόλου της NDTI αποτελούν παράδειγμα της αντίθεσης μεταξύ γυμνών εδαφών και δομημένων περιοχών.
Πίνακας 1. Δείγμα κατάρτισης και κατανομή σημείων αξιολόγησης της ακρίβειας για τις περιφέρειες μελέτης.
Σχήμα 5. Αποτελέσματα ταξινόμησης:α) NDBI· β)BUI· γ)BAEI· δ) NBI· ε)VIBI· στ)IBI· ζ) περιβάλλον εργασίας χρήστη· η)BSI· i)σύνολα πολλαπλών ευρετηρίων που βασίζονται σε NDTI· και(ι)πρωτότυπες φασματικές ζώνες.


Εισαγωγή Σε όλη την ιστορία, η αύξηση της πυκνότητας του πληθυσμού και η επέκταση των αστικών περιοχών, ιδίως στις μητροπολιτικές πόλεις, έχουν αλλάξει τη μορφή της επιφάνειας της Γης. Ο ρυθμός αύξησης της κάλυψης/χρήσης γης (LCU) έχει αυξηθεί τις τελευταίες δεκαετίες. Η αύξηση του πληθυσμού οδηγεί σε αύξηση της κατανάλωσης νερού και ενέργειας και προκαλεί αλλαγές στην επιφάνεια της γης, οι οποίες έχουν ως αποτέλεσμα την περιφερειακή έως παγκόσμια κλιματική αλλαγή και την υποβάθμιση του περιβάλλοντος. Οι αλλαγές στην LCU που έχουν συμβεί λόγω της αστικοποίησης, της αποψίλωσης των δασών, των φυσικών καταστροφών και των έντονων γεωργικών πρακτικών, έχουν επηρεάσει σε μεγάλο βαθμό τα κλιματικά χαρακτηριστικά σε περιφερειακή και παγκόσμια κλίμακα. Οι αλλαγές αυτές οδηγούν γενικά σε αυξήσεις των θερμοκρασιών κοντά στην επιφάνεια και σχηματισμό των νήσων θερμότητας, οι οποίες προκαλούν άλλα κλιματικά φαινόμενα. Η διαθεσιμότητα δωρεάν παγκόσμιων και ιστορικών δορυφορικών εικόνων παρέχει μια πολύτιμη ευκαιρία για τη χαρτογράφηση και την παρακολούθηση της LCU. Ο κύριος στόχος αυτού του ερευνητικού έργου ήταν να προτείνει μια προσέγγιση ταξινόμησης SVM που βασίζεται σε πολλαπλούς δείκτες, για τη χαρτογράφηση επτά διαφορετικών κατηγοριών LCU, σε σύνθετες αστικές περιοχές. Η έρευνα επικεντρώθηκε στον διαχωρισμό των κατοικημένων περιοχών και των γυμνών εδαφών, εκτός από την παροχή ενός ακριβούς και αξιόπιστου χάρτη LCU, σε τρεις πυκνά αστικοποιημένες μητροπολιτικές πόλεις της Τουρκίας, χρησιμοποιώντας τις εικόνες Sentinel-2A.


Περιοχή μελέτης

Η Κωνσταντινούπολη είναι η πιο πυκνοκατοικημένη και η μεγαλύτερη πόλη της Τουρκίας, που βρίσκεται σε γεωγραφικό πλάτος 41°00′44,06" Β και γεωγραφικό μήκος 28°58′33,66" Ε, στο Βόρειο Ημισφαίριο, ενώνοντας τις δύο ηπείρους της Ασίας και της Ευρώπης. Η Κωνσταντινούπολη είναι επίσης μία από τις μεγαλύτερες μητροπολιτικές πόλεις της Ευρώπης, καλύπτοντας περίπου 5.500 χιλιόμετρα2, με πληθυσμό άνω των 15 εκατομμυρίων το 2017, που αντιστοιχεί στο 18% της χώρας . Η σημαντική αύξηση του πληθυσμού που σημειώθηκε λόγω της βιομηχανικής ανάπτυξης και της απρογραμμάτιστης αστικοποίησης, κατά το δεύτερο μισό του εικοστού αιώνα, είχε ως αποτέλεσμα κρίσιμους μετασχηματισμούς της δομής και της μορφολογίας της πόλης.

Μεθοδολογία

Προεπεξεργασία δορυφορικών εικόνων και εξαγωγή φασματικών υπογραφών

Οι δορυφορικές εικόνες που χρησιμοποιήθηκαν σε αυτή την έρευνα αποκτήθηκαν σε συνθήκες καθαρού ουρανού, με ελάχιστες ατμοσφαιρικές διαταραχές. Για κάθε περιοχή χρησιμοποιήθηκε μία μόνο εικόνα. Ως εκ τούτου, δεν ήταν αναγκαίο ένα βήμα προεπεξεργασίας της ατμοσφαιρικής διόρθωσης. Η χωρική ανάλυση των ζωνών εικόνας Sentinel-2 διέφερε μέσω των τμημάτων μήκους κύματος. Έτσι, υπήρχε ανάγκη για ομοιόμορφη χωρική ανάλυση για αναλύσεις όπως η δημιουργία φασματικού προφίλ βάσει σημείου, η δημιουργία φασματικού δείκτη και η ταξινόμηση πολυφασματικής εικόνας. Oι ζώνες ανάλυσης 20 m και 60 m των εικόνων Sentinel-2A ανανεώθηκαν στα 10 m, χρησιμοποιώντας την πλησιέστερη μέθοδο γείτονα, για να διατηρηθεί η ακεραιότητα της χωρικής ανάλυσης. Στο επόμενο βήμα, εξήχθησαν φασματικά προφίλ διαφόρων τύπων αντικειμένων γης, συμπεριλαμβανομένων των δασών broadleaf, των φυλλοβόλας δασών, των γεωργικών εκτάσεων, της αστικής πράσινης κάλυψης, της δομημένης, βιομηχανικής περιοχής, της αραιής κατοικημένης περιοχής, του θαλασσινού νερού, των υδάτων της λίμνης, της άσφαλτου και της γυμνής γης, για να εξετάσουν και να συγκρίνουν την ικανότητα διαχωρισμού των ζωνών εικόνας Sentinel-2A(Σχήμα 2 ). Κατά τη διάρκεια της διαδικασίας ταξινόμησης, τα δείγματα από πλατύφυλλα και φυλλοβόλα δάση τοποθετήθηκαν στην κατηγορία των δασών, δείγματα από αστική πράσινη κάλυψη και γεωργικές εκτάσεις ανατέθηκαν στην κατηγορία βλάστησης και δείγματα από λίμνες και θάλασσες ανατέθηκαν στην κατηγορία ύδατος, για να ληφθούν οι επτά τύποι κάλυψης γης που χρησιμοποιήθηκαν στην παρούσα έρευνα. Όπως δείχνει το σχήμα 2, η γυμνή γη είχε παρόμοια αντανάκλαση με τις κατοικημένες περιοχές και ήταν δύσκολο να προσδιοριστούν αυτές οι δύο κατηγορίες με τη χρήση ενός ενιαίου δείκτη. Ήταν απλό να προσδιοριστούν τα υδάτινα σώματα από άλλους τύπους κάλυψης γης, λόγω της μοναδικής φασματικής υπογραφής τους. Η σταδιακή μείωση της αντανάκλασης από τη ζώνη 1 στη ζώνη 12 ήταν ειδική για τα υδατικά συστήματα. Μια σημαντική αύξηση της αντανάκλασης στις ζώνες των κόκκινων άκρων (B5, B6, B7) και nir ζώνες (B8, B8a), σε σύγκριση με την κόκκινη ζώνη (B4) ήταν ειδική για την κάλυψη βλάστησης και θα μπορούσε να χρησιμοποιηθεί για την ανίχνευση φυτικών περιοχών. Επιπλέον, οι αναλύσεις της καμπύλης αντανάκλασης απέδειξαν ότι τα B1, B9 και B10 (εγγενής ανάλυση 60 m) δεν μπορούσαν να χρησιμοποιηθούν για τον διαχωρισμό των κατηγοριών κάλυψης γης. Οι παρατηρήσεις αυτές θα μπορούσαν να εξηγηθούν από τα χαρακτηριστικά αυτών των ζωνών. Β1 (παράκτιο αεροζόλ), επηρεασμένο έντονα από την ατμόσφαιρα και από τα Β9 και Β10, τα οποία ήταν υδρατμοί και κίρρος, δεν παρείχαν φασματικές πληροφορίες σχετικά με την επιφάνεια της Γης. Έτσι, αυτές οι ζώνες αφαιρέθηκαν από τα δεδομένα και πραγματοποιήθηκαν περαιτέρω αναλύσεις με τις υπόλοιπες 10 ζώνες. Η φασματική αξιολόγηση έδειξε ότι η κύρια πρόκληση ήταν ο διαχωρισμός της γυμνής γης και των κατοικημένων περιοχών, που ήταν ο κύριος στόχος αυτής της έρευνας.

Δημιουργία εικόνων πολλαπλών δεικτών

Για το στοιχείο κάλυψης βλάστησης, εξετάστηκε ο δείκτης ομαλοποιημένης βλάστησης με βάση τις κόκκινες άκρες (NDVIre) και δύο γνωστοί δείκτες βλάστησης, ο προσαρμοσμένος στο έδαφος δείκτης βλάστησης (SAVI) , και ο NDVI. O Hansen et al. , είχε αξιολογήσει για πρώτη φορά το NDVIre αναλύοντας δεδομένα υπερφασματικής αντανάκλασης. Η Delgado et al.Mκαι η Frampton et al είχαν δοκιμάσει για πρώτη φορά τη δυνατότητα εφαρμογής της στα σχεδιασμένα τμήματα μήκους κύματος Sentinel-2, πριν από την έναρξη της δορυφορικής αποστολής, χρησιμοποιώντας δεδομένα από διάφορες επιτόπιες εκστρατείες του ΗΣΥ σε γεωργικές εγκαταστάσεις. Τα αποτελέσματα και των δύο μελετών έδειξαν ότι η εφαρμογή αυτού του δείκτη στο κόκκινο B4 του Sentinel-2 (665 nm) και στις νέες ζώνες B5 (705 nm) του κόκκινου άκρου, παρείχε υψηλές συσχετίσεις κατά την εκτίμηση του δείκτη περιοχής φύλλων και της περιεκτικότητας σε χλωροφύλλη. Pu et al και Zhu et al. εισήγαγε τη λειτουργική χρήση αυτού του δείκτη για τις δορυφορικές εικόνες Worldview-2. Απ' όσο γνωρίζουμε, αυτή η έρευνα είναι μια νέα αξιολόγηση του NDVIre σχετικά με τις επιχειρησιακές εικόνες Sentinel-2A. Τέλος, για το συστατικό του υδατικού σώματος, εξετάστηκε ο ομαλοποιημένος δείκτης νερού διαφοράς (NDWI) και ο τροποποιημένος ομαλοποιημένος δείκτης νερού διαφοράς (MNDWI). Οι τύποι που σχετίζονται με τους παραπάνω φασματολογικούς δείκτες ήταν:

NDTI=((SWIR 1−SWIR 2))/((SWIR 1+SWIR 2)) (1)

NDVIre=((RedEdge 1−Red))/((RedEdge 1+Red)) (2)

NDVI=((NIR−Red))/((NIR+Red)) (3)

SAVI=((NIR−Red))/((NIR+Red+0.5))×1.5 (4)

NDWI=((Green−NIR))/((Green+NIR)) (5)

MNDWI=((Green−SWIR 1))/((Green+SWIR 1)) (6)

Πειραματική σύγκριση των υφιστάμενων ενσωματωμένων δεικτών

Το κύριο ενδιαφέρον για την ταξινόμηση της LCU στις αστικές περιοχές είναι ο διαχωρισμός των γυμνών εκτάσεων και των κατοικημένων περιοχών, λόγω των παρόμοιων φασματικών χαρακτηριστικών τους. Η εξόρυξη της γυμνής γης είναι ένα δύσκολο έργο, λόγω της πολυπλοκότητας των συστατικών του εδάφους και των φασμάτων του εδάφους. Όπως δήλωσε ο Ben-Dor et al το χημικό συστατικό επηρεάζει άμεσα τη φασματική υπογραφή γυμνών εδαφών, οι οποίες μπορεί να είναι ισχυρές ή αδύναμες. Επιπλέον, πολλές από αυτές τις φασματικές υπογραφές αλληλοεπικαλύπτονται, γεγονός που καθιστά δύσκολο τον προσδιορισμό της κάλυψης του εδάφους. Κατά συνέπεια, τα φασματικά χαρακτηριστικά της κάλυψης του εδάφους, με διαφορετικά συστατικά και περιεκτικότητα σε νερό, μπορεί να διαφέρουν μεταξύ διαφορετικών περιβαλλόντων και εποχών, γεγονός που καθιστά δύσκολη τη διαφοροποίηση της γυμνής γης.

Ομαλοποιημένος δείκτης διαφοράς άροσης (NDTI)

Για να προταθεί ένας δείκτης που μπορεί να αναδείξει τις κατοικημένες περιοχές και να τις διαχωρίσει από τη γυμνή γη, τα φασματικά προφίλ αυτών των δύο χαρακτηριστικών γης αναλύθηκαν σε διάφορα σημεία του δείγματος. Έδειξε ότι η διαφορά αντανάκλασης μεταξύ των ζωνών SWIR (ζώνες 11 και 12) ήταν υψηλότερη για τα εικονοστοιχεία που επιλέχθηκαν από τη γυμνή γη από ό, τι για τα εικονοστοιχεία που επιλέχθηκαν από τις κατοικημένες περιοχές. Αυτό υποδείκνυε την πιθανή αποτελεσματικότητα αυτών των δύο ζωνών SWIR για τη διαφοροποίηση της δομημένης περιοχής από τη γυμνή γη. Διερευνήθηκε η δυνατότητα εφαρμογής του NDTI στις ζώνες SWIR των εικόνων Sentinel-2A για την κατοικημένη περιοχή και την εξόρυξη γυμνών εκτάσεων. Ο δείκτης αυτός προτάθηκε για πρώτη φορά από τους van Deventer et al. για πρακτικές εδάφους, διαχείριση άροσης και χαρτογράφηση καταλοίπων καλλιεργειών και εφαρμόστηκε με επιτυχία από τους Daughtry et al. και Eskandari et al. για γεωργικές πρακτικές και διαχείριση του εδάφους. Απ' όσο γνωρίζουμε, είναι η πρώτη φορά που η NDTI χρησιμοποιείται ως συστατικό στοιχείο για τη διάκριση και τον διαχωρισμό των Τα στοιχεία της NDTI που παρέχονται στο σχήμα 4 και οι υφιστάμενοι ενσωματωμένοι δείκτες που παρέχονται στο σχήμα 3 δείχνουν ότι η NDTI μπορεί να αναδείξει τις αστικές περιοχές και αυξάνει την αντίθεση μεταξύ της γυμνής γης (κόκκινος κύκλος) και της δομημένης περιοχής (μπλε κύκλος). Αυτή η οπτική επιθεώρηση δείχνει την πιθανή αποτελεσματικότητα της NDTI, σε σύγκριση με τους υπάρχοντες ενσωματωμένους δείκτες.κατοικημένων περιοχών και της γυμνής γης.

Ομαλοποιημένος δείκτης διαφοράς άροσης (NDTI)

Για να προταθεί ένας δείκτης που μπορεί να αναδείξει τις κατοικημένες περιοχές και να τις διαχωρίσει από τη γυμνή γη, τα φασματικά προφίλ αυτών των δύο χαρακτηριστικών γης αναλύθηκαν σε διάφορα σημεία του δείγματος. Έδειξε ότι η διαφορά αντανάκλασης μεταξύ των ζωνών SWIR (ζώνες 11 και 12) ήταν υψηλότερη για τα εικονοστοιχεία που επιλέχθηκαν από τη γυμνή γη από ό, τι για τα εικονοστοιχεία που επιλέχθηκαν από τις κατοικημένες περιοχές. Αυτό υποδείκνυε την πιθανή αποτελεσματικότητα αυτών των δύο ζωνών SWIR για τη διαφοροποίηση της δομημένης περιοχής από τη γυμνή γη. Διερευνήθηκε η δυνατότητα εφαρμογής του NDTI στις ζώνες SWIR των εικόνων Sentinel-2A για την κατοικημένη περιοχή και την εξόρυξη γυμνών εκτάσεων. Ο δείκτης αυτός προτάθηκε για πρώτη φορά από τους van Deventer et al. για πρακτικές εδάφους, διαχείριση άροσης και χαρτογράφηση καταλοίπων καλλιεργειών και εφαρμόστηκε με επιτυχία από τους Daughtry et al. και Eskandari et al. για γεωργικές πρακτικές και διαχείριση του εδάφους. Απ' όσο γνωρίζουμε, είναι η πρώτη φορά που η NDTI χρησιμοποιείται ως συστατικό στοιχείο για τη διάκριση και τον διαχωρισμό των Τα στοιχεία της NDTI που παρέχονται στο σχήμα 4 και οι υφιστάμενοι ενσωματωμένοι δείκτες που παρέχονται στο σχήμα 3 δείχνουν ότι η NDTI μπορεί να αναδείξει τις αστικές περιοχές και αυξάνει την αντίθεση μεταξύ της γυμνής γης (κόκκινος κύκλος) και της δομημένης περιοχής (μπλε κύκλος). Αυτή η οπτική επιθεώρηση δείχνει την πιθανή αποτελεσματικότητα της NDTI, σε σύγκριση με τους υπάρχοντες ενσωματωμένους δείκτες.κατοικημένων περιοχών και της γυμνής γης.

Αξιολόγηση ταξινόμησης και ακρίβειας Για την αξιολόγηση της ακρίβειας των αποτελεσμάτων ταξινόμησης, οι συνολικές ακρίβειες με τις μετρήσεις του χρήστη, του παραγωγού και της συνολικής ακρίβειας και της στατικής Kappa προήλθαν από τον πίνακα σύγχυσης. Η αξιολόγηση της ακρίβειας των αποτελεσμάτων ταξινόμησης πραγματοποιήθηκε με στρωματοποιημένα τυχαία σημεία και η αρχική εικόνα Sentinel-2A και οι εικόνες © Google Earth ως δεδομένα αναφοράς. Σχεδιάστηκε μια τυχαία κατανομή σημείων, ανάλογα με το δυναμικό ετερογένειας και την κάλυψη των τάξεων. Η κατανομή του δείγματος εκπαίδευσης και ο αριθμός των βαθμών που χρησιμοποιούνται στην αξιολόγηση ακρίβειας παρέχονται για κάθε κατηγορία και περιφέρεια του πίνακα 1.

Αποτελέσματα και συζήτηση

Αποτελέσματα για την κύρια περιοχή μελέτης

Τα αποτελέσματα της ταξινόμησης και οι μετρήσεις αξιολόγησης της ακρίβειας έδειξαν ότι η NDTI, σε συνδυασμό με το NDVIre και το MNDWI, παρείχαν την υψηλότερη ακρίβεια, σε σύγκριση με άλλους συνδυασμούς, συμπεριλαμβανομένων των υφιστάμενων ενσωματωμένων δεικτών και της αρχικής ταξινόμησης εικόνας. Η οπτική ανάλυση των εικόνων που προκύπτουν στο Σχήμα 5 δείχνει ότι η NDTI επιλύει το πρόβλημα ανάμειξης της δομημένης και της γυμνής γης, κάτι που είναι προφανές σε άλλους ενσωματωμένους δείκτες. Επιπλέον, τα προβλήματα που σχετίζονται με την υπερεκτίμηση των κατοικημένων περιοχών και την υποτίμηση της γυμνής γης βελτιώθηκαν σημαντικά, χρησιμοποιώντας αυτόν τον συνδυασμό. Αν και τα αποτελέσματα ταξινόμησης της εικόνας πολλαπλών δεικτών που βασίζεται σε NDTI υποτίμησαν την πυκνότητα της δομημένης περιοχής σε ορισμένες πυκνές κατοικημένες περιοχές, η προτεινόμενη μέθοδος ταξινόμησης εικόνας πολλαπλών δεικτών παρείχε αξιόπιστες πληροφορίες τόσο για γυμνές εκτάσεις όσο και για δομημένα εδάφη, ενώ κατηγοριοποίησε με ακρίβεια τις κατηγορίες κάλυψης γης νερού και βλάστησης.

Επικύρωση ανεξάρτητων περιοχών δοκιμών

Η αποτελεσματικότητα και η εφαρμοσιμότητα της προτεινόμενης προσέγγισης δοκιμάστηκε σε δύο μητροπολιτικές πόλεις της Τουρκίας, την Άγκυρα και την Κόνια. Οι περιφέρειες αυτές ήταν καλές υποψήφιες για την αξιολόγηση των επιδόσεων της μεθόδου πολλαπλών δεικτών, επειδή περιλαμβάνουν κατοικημένες και βιομηχανικές περιοχές που περιβάλλονται από εκτεταμένες γυμνές εκτάσεις, οι οποίες ταιριάζουν στον κύριο στόχο αυτής της έρευνας. Επιπλέον, οι ημερομηνίες απόκτησης εικόνας αντιπροσώπευαν διαφορετικές εποχιακές συνθήκες. Η ταξινόμηση SVM πραγματοποιήθηκε σε αυτές τις περιοχές για τα τρία σύνολα δεδομένων, τα οποία ήταν η αρχική εικόνα Sentinel-2A δέκα ζωνών, το σύνολο δεδομένων NDBI, NDVIre, MNDWI και το σύνολο δεδομένων NDTI, NDVIre, MNDWI. Η ανάλυση των δύο ανεξάρτητων περιοχών δοκιμών έδειξε παρόμοια χαρακτηριστικά και υποστήριξε την αποτελεσματικότητα του πολυ-δείκτη που βασίζεται σε NDTI σε διαφορετικές χερσαίες και εποχιακές συνθήκες. Συγκεκριμένα, οι στέγες κτιρίων σε βιομηχανικές περιοχές ήταν κατασκευασμένες από υλικά και σκυρόδεμα με βάση το αλουμίνιο, ενώ οι στέγες των άλλων κτιρίων στις δομημένους χώρους ήταν κατασκευασμένες από πλακάκια κυρίως και στις περιοχές δοκιμών. Η διαφορά στο υλικό οροφής είχε ως αποτέλεσμα διαφορετικές φασματικές αντιδράσεις και επέτρεψε το διαχωρισμό στις αρχικές φασματικές ζώνες και τα δεδομένα πολλαπλών δεικτών για αυτές τις κατηγορίες. Έτσι, το πρόβλημα της ανάμειξης ήταν κυρίως μεταξύ γυμνών εκτάσεων και των κατοικημένων περιοχών και μεταξύ γυμνής γης και βιομηχανίας. Απαιτείται περαιτέρω ανάλυση για την αξιολόγηση των επιδόσεων της προτεινόμενης προσέγγισης σε περιοχές όπου οι βιομηχανικές και δομούμενες περιοχές αποτελούνταν από παρόμοια υλικά οροφής. Τα αποτελέσματα της μελέτης και των περιοχών δοκιμών έδειξαν ότι, αν και οι ενσωματωμένοι δείκτες έχουν αποδειχθεί ότι αναδεικνύουν τις κατοικημένες περιοχές, οι επιδόσεις τους περιορίστηκαν σε ετερογενή τοπία, όπου οι αστικές περιοχές και οι γυμνές εκτάσεις ήταν μικτές. Ένας δείκτης υπέρυθρης βάσης βραχέων κυμάτων βελτίωσε τον διαχωρισμό των αστικών περιοχών και των γυμνών εδαφών, όπως φαίνεται σε αυτό το ερευνητικό έργο. Επιπλέον, οι πρόσφατα προστιθέμενοι φασματικές ζώνες κόκκινου άκρου του Sentinel-2A ενίσχυσαν την ανίχνευση και τη χαρτογράφηση της κάλυψης της βλάστησης.


Συμπεράσματα

Ο διαχωρισμός της γυμνής γης από τις αδιαπέραστες επιφάνειες και τις κατοικημένες περιοχές ήταν το κύριο πρόβλημα στη χαρτογράφηση των αστικοποιημένων περιοχών. Σε αυτό το ερευνητικό έργο, έχει προταθεί μια νέα προσέγγιση πολλαπλών δεικτών για την ταξινόμηση LCU των δορυφορικών εικόνων Sentinel-2A, εστιάζοντας στον διαχωρισμό της αστικής και της γυμνής γης, εκτός από άλλες κατηγορίες κάλυψης γης. Για τη βελτίωση της ακρίβειας ταξινόμησης και την επίλυση των προβλημάτων εσφαλμένης ταξινόμησης και υπερεκτίμησης, αναπτύχθηκε μεθοδολογία με τη χρήση φασματικών δεικτών που κατηγοριοποίησαν τις τρεις μεγάλες κατηγορίες κάλυψης γης, υδάτινα σώματα, κάλυψη βλάστησης και κατοικημένες περιοχές. Οι εικόνες πολλαπλών ευρετηρίων που δημιουργήθηκαν με διαφορετικούς συνδυασμούς ευρετηρίων ταξινομήθηκαν χρησιμοποιώντας τον αλγόριθμο SVM που βασίζεται στη μηχανική μάθηση. Τα αποτελέσματα ταξινόμησης πολλαπλών δεικτών συγκρίθηκαν με το αποτέλεσμα ταξινόμησης SVM της εικόνας Sentinel-2A δέκα ζωνών. Τα αποτελέσματα αυτής της έρευνας έδειξαν ότι η NDTI σε συνδυασμό με το NDVIre και το MNDWI βελτίωσαν τον διαχωρισμό μεταξύ των κατοικημένων περιοχών και των γυμνών εκτάσεων και βελτίωσαν σημαντικά την εσφαλμένη ταξινόμηση των γυμνών εκτάσεων ως δομημένους περιοχές. Επιπλέον, το NDTI, το οποίο υπολογίστηκε από τη διαφορά των ζωνών SWIR, διαιρούμενο με το άθροισμά τους, θα μπορούσε να εφαρμοστεί στις εικόνες Landsat 5, 7 και 8, καθώς και στις αποστολές Landsat που περιελάμβαναν τις ζώνες SWIR με παρόμοιο εύρος μήκους κύματος της αποστολής Sentinel-2. Αυτή η δυνατότητα εφαρμογής επέτρεψε μια περαιτέρω ανάλυση χρησιμοποιώντας συνδυασμένες ιστορικές αρχειακές αποστολές Landsat και υψηλότερες χωρικές και φασματικές εικόνες Sentinel-2A, για την ανίχνευση αλλαγών LCU μέσα από δεκαετίες. Αν και η ταξινόμηση των εικόνων Sentinel-2A δέκα ζωνών παρείχε αποδεκτά αποτελέσματα που σχετίζονται με τη δομημένη περιοχή και τις γυμνές κατηγορίες γης, η εικόνα πολλαπλών δεικτών του NDTI, του NDVIre και του MNDWI παρείχε πιο ερμηνευτικά και ενδεικτικά αποτελέσματα για τις κατοικημένες περιοχές, όσον αφορά το σχήμα, την ένταση και το μοτίβο. Ο προτεινόμενος συνδυασμός παρείχε επίσης ικανοποιητικά αποτελέσματα και βελτιώσεις ακρίβειας για τις άλλες κατηγορίες LCU, με ακρίβεια 85% ή καλύτερη στις τρεις περιφέρειες μελέτης, σε σύγκριση με άλλα σύνολα δεδομένων. Τα ευρήματα αυτά υποδεικνύουν την πιθανή αποτελεσματικότητα του προτεινόμενου πολυ-δείκτη που έχει οριστεί ως μέθοδος μείωσης της διάστασης στην πολυχρονική ανάλυση. Περαιτέρω μελέτες έχουν προγραμματιστεί για την ενσωμάτωση πολυχρονικών και πολυπολικών δεδομένων SAR, όπως το Sentinel 1 (για την επεξεργασία της αλυσίδας), προκειμένου να αξιοποιούνται τα δεδομένα SAR στο διαχωρισμό γυμνών εδαφών και δομημένου περιοχών.

Προσωπικά εργαλεία