Αυτοματοποιημένη διαχείριση νεφοσκεπών περιοχών

Από RemoteSensing Wiki

(Διαφορές μεταξύ αναθεωρήσεων)
Μετάβαση σε: πλοήγηση, αναζήτηση
μ (Η Αυτοματοποιημένη διαχείριση σκιασμένων από σύννεφα περιοχών μετονομάστηκε σε Υτοματοποιημένη διαχείριση νεφοσκεπών περιοχών)
μ (Η Υτοματοποιημένη διαχείριση νεφοσκεπών περιοχών μετονομάστηκε σε Αυτοματοποιημένη διαχείριση νεφοσκεπών περιοχών)

Αναθεώρηση της 08:48, 22 Φεβρουαρίου 2011


Αυτοματοποιημένη διαχείριση σκιασμένων από σύννεφα περιοχών.
Πρωτότυπος τίτλος : Landsat 7 Automatic Cloud Cover Assessment Πηγή : Richard R. Irish, Science Systems and Applications, Inc. [4]

Περίληψη

Αρχικός στόχος της εργασίας ήταν να δημιουργηθεί ένα εποχικό, πλήρες αρχείο περιοχών νεφοκάλυψης του εδάφους. Για να επιτευχθεί αυτός ο στόχος, αποκτήθηκαν 250 φωτογραφίες Landsat 7 ΕΤΜ+ οι οποίες αρχειοθετήθηκαν αναλυτικά σε βάση δεδομένων. Δημιουργήθηκε ένας αυτοματοποιημένος αλγόριθμος αξιολόγησης της νεφοκάλυψης (ACCA) για τον προσδιορισμό του τμήματος κάθε ETM+ απεικόνισης, το οποίο εμφανίζει νεφοκάλυψη. Τα αποτελέσματα της κάλυψης των νεφών που προέκυψαν, χρησιμοποιούνται στη συνέχεια για να προσδιορίζονται επιτυχώς οι περιοχές αυτές, στη βάση δεδομένων των εικόνων. O διαχωρισμός των νεφών από την υπόλοιπη επιφάνεια της απεικόνισης, η οποία εμφανίζεται κάτω από την έκταση τους, σκιασμένη, είναι σχετικά απλή. Τα σύννεφα είναι λευκά και εμφανίζουν χαμηλή θερμοκρασία από την επιφάνεια του εδάφους και αυτές οι ιδιότητες μπορούν να τονισθούν χρησιμοποιώντας τα πολυφασματικά χαρακτηριστικά των απεικονίσεων Landsat ETM+. Εντούτοις, οι ψηφιακές τιμές που εμφανίζουν τα σύννεφα και η μεταβλητότητα των ψηφιακών τιμών της επιφάνειας του εδάφους, όπως έχουν καταγραφεί στις Landsat ETM απεικονίσεις, δημιουργούν τις συνθήκες με τη βοήθεια των διαγραμμάτων ανακλαστικότητας τα οποία δημιουργούνται από τον υπολογισμό του συντελεστή ανάκλασης και θερμοκρασίας στις περιοχές που εμφανίζονται τα σύννεφα, συντελούν στον πιθανοθεωρητικό προσδιορισμό πιθανών (αναμενόμενα πιθανών) τιμών pixel των σκιασμένων από νέφη περιοχών. Βέβαια στη μέθοδο, εμφανίζονται διάφορα προβλήματα, όπως η λανθασμένη αυτόματη ταυτοποίηση των νεφών σε κάποιες απεικονίσεις, ενώ σε άλλες απεικονίσεις οι ταυτοποιήσεις των σκιασμένων επιφανειών, είναι εξαίρετες. Η ακρίβεια του προσδιορισμού των ψηφιακών τιμών των σκιασμένων pixel επηρρεάζεται από τα χαρακτηριστικά της επιφάνειας του εδάφους (εδαφοκάλυψη, ύπαρξη βλάστησης, τεχνικών έργων κτλ.) που έχουν συντελεστή ανάκλασης που είναι όμοιος και σε μερικές περιπτώσεις πολύ κοντά σε αριθμητική τιμή, με τις ψηφιακές τιμές που εμφανίζουν τα νέφη, στα κανάλια της κάθε απεικόνισης. Η μεθοδολογία που αναπτύχθηκε προσπαθεί να εξομαλύνει και να ελαχιστοποιήσει τα αποτελέσματα της της μεταβλητότητας των ψηφιακών τιμών που εμφανίζονται στις σκιασμένες περιοχές. Ο αυτοματοποιημένος αλγόριθμος χειρίζεται τον πληθυσμό των ψηφιακών τιμών των υποκείμενων των νεφών περιοχών, σε κάθε δορυφορική απεικόνιση μεμονωμένα, και επαναλαμβάνει δυο φορές τον έλεγχο αυτόν. Το πρώτο αλγοριθμικό πέρασμα μέσω των δεδομένων της βάσης, συντελείται για να προσδιοριστούν τα νέφη (επομένως και οι υποκείμενες σκιασμένες επιφάνειες). Οκτώ διαφορετικά φίλτρα χρησιμοποιούνται διαδοχικά, για να προσδιορίσουν και να ενισχύσουν τις ψηφιακές τιμές των σκιασμένων επιφανειών.

Εικόνα 1 : Εικόνα Landsat της Κασπίας θάλασσας,[1]πηγή



Μεθοδολογία

Αρχικά, πραγματοποιείται ένα "πέρασμα" μέσω των ραδιομετρικά διορθωμένων εικονοστοιχείων της κάθε απεικόνισης, για να απομονώσει τα νέφη και τις υποκείμενες σκιασμένες επιφάνειες. Με τον τρόπο αυτόν διαπιστώνονται τρεις βασικές κατηγορίες περιοχών, αυτές με νέφη, αυτές χωρίς νέφη και κάποιες περιοχές που τίθενται σε αμφιβολία. Στη συνέχεια εφαρμόζονται οκτώ διαφορετικά φίλτρα στα εικονοστοιχεία των απεικονίσεων και για τις περιοχές οι οποίες έχουν διαπιστευτεί ως περιοχές νεφοκάλυψης. Η δδ/δι των 30 μέτρων των pixel των Landsat απεικονίσεων σε όλα τα κανάλια εκτός του θερμικού βοηθά στη σύγκριση των στατιστικών των ψηφιακών τιμών. Όλα τα pixel σε μια Landsat ETM+ απεικόνιση υποβάλλονται διαδοχικά σε επεξεργασία. Το φιλτράρισμα εκτελείται σε κάθε pixel έως ότου απορριφθεί (ή γίνει δεκτή) η μηδενική υπόθεση που έχει τεθεί ή ταξινομηθεί ως ψηφιακή τιμή σκιασμένης επιφάνειας. Ακολουθεί μια σύντομη περιγραφή του κάθε φίλτρου που εφαρμόζεται:

1)Όριο φωτεινότητας (Brightness Threshold). Κάθε υποπίνακας (χωρική περιοχή ψηφιακών τιμών) τριών pixel αρχικά συγκρίνεται με ένα όριο φωτεινότητας. Τα pixel που είναι κάτω αυτού του ορίου, προσδιορίζονται ως μη εντοπισμένες ψηφιακές τιμές νεφών. Τα pixel των οποίων οι ψηφιακές τιμές περνούν το κατώφλι του φίλτρου 1, υφίστανται το φίλτρο 2.

2)Ομαλοποιημένο φίλτρο (δείκτης) διαφοράς χιονιού (Normalized Snow Difference Index). Οι τιμές των pixel από τα κανάλια 2 και 5 χρησιμοποιούνται για να δημιουργήσουν το ομαλοποιημένο φίλτρο / δείκτη χιονιού (NDSI). Το NDSI εκφράζεται ως εξής: NDSI = (κανάλι 2 – κανάλι 5) / (κανάλι 2 + κανάλι 5). Αυτό το φίλτρο / δείκτης είναι ιδιαίτερα χρήσιμο για την αυτόματη αφαίρεση του χιονιού από μια απεικόνιση. Ο συντελεστής ανάκλασης των νεφών και του χιονιού είναι παρόμοιος στο κανάλι 2. Εντούτοις, στο κανάλι 5, ο συντελεστής ανάκλασης για τα νέφη είναι πολύ υψηλός ενώ για το χιόνι είναι χαμηλός. Ο Hall βρήκε εμπειρικά ότι η NSDI τιμή που είναι μεγαλύτερη από 0.40 αντιπροσωπεύει αρκετά καλά την κάλυψη χιονιού. Αυτή η τιμή (0.40) δοκιμάστηκε αρχικά από την αυτοματοποιημένη διαδικασία ACCA για να αποβάλει τις χιονισμένες επιφάνειες αλλά αποβλήθηκαν επίσης και νεφοσκεπείς επιφάνειες, οπότε το κατώτατο όριο (κατώφλι) αυξήθηκε σε 0.70, τιμή που έδωσε συνολικά καλύτερα αποτελέσματα στο διαχωρισμό χιονισμένων από νεφοσκεπείς περιοχές. Τα pixel που φιλτράρονται με αυτόν τον τρόπο, περνούν στο φίλτρο 3.

3)Όριο θερμοκρασίας. Αυτό το φίλτρο εξετάζει τις θερμικές ψηφιακές τιμές (του καναλιού 6) για τα πιθανά pixel. Χαμηλές ψηφιακές τιμές και πάντως κάτω από ένα συγκεκριμένο εμπειρικό κατώφλι, προωθούν τα εξεταζόμενα pixel στο φίλτρο 4.

4)Φίλτρο από το λόγο κανάλι5/κανάλι6. Οι τιμές των pixel από τα κανάλια 5 και 6 χρησιμοποιούνται για να δημιουργήσουν ένα φίλτρο, ως εξής: (1 – κανάλι 5) * κανάλι 6. Αυτό το φίλτρο λειτουργεί πολύ καλά στο διαχωρισμό και είναι ιδιαίτερα χρήσιμο για την εξάλειψη των "κρύων" χαρακτηριστικων γνωρισμάτων της επιφάνειας εδάφους που παρουσιάζει ο συντελεστής ανάκλασης στο κανάλι 5. Τα pixel που προκρίνονται από αυτό το φίλτρο περνούν στο φίλτρο 6.

5)Κανάλι αναλογίας 4/3 (Band 4/3 Ratio). Αυτό το φίλτρο αποβάλλει την ιδιαίτερα αντανακλαστική βλάστηση και είναι απλά κανάλι 4 συντελεστής ανάκλασης που διαιρείται με το κανάλι 3 του συντελεστή ανάκλασης. Κοντά στις υπέρυθρες ακτίνες (κανάλι 4) ο συντελεστής ανάκλασης για τα πράσινα φύλλα είναι υψηλός επειδή απορροφάται πολύ λίγη ενέργεια. Στην κόκκινη περιοχή (κανάλι 3) η χλωροφύλλη στα πράσινα φύλλα απορροφά την ενέργεια κι έτσι ο συντελεστής ανάκλασης είναι χαμηλός. Η αναλογία 4/3 οδηγεί στις υψηλότερες τιμές για τη βλάστηση απ'ό, τι για άλλα χαρακτηριστικά γνωρίσματα της σκηνής, συμπεριλαμβανομένων των σύννεφων. Χρησιμοποιείται μια ρύθμιση ορίου της τάξεως των 2.0. Τα pixels που υπερβαίνουν αυτό το όριο ονομάζονται διφορούμενα και ξαναεξετάζονται στο δεύτερο στάδιο επεξεργασίας. Τα pixels με τις αναλογίες κάτω από αυτό το όριο περνούν στο φίλτρο 6.

6)Λόγος αναλογίας 4/2 Αυτό το φίλτρο αποβάλλει την ιδιαίτερα αντανακλαστική βλάστηση και διαμορφώνεται με τη διαίρεση του καναλιού 4 του συντελεστή ανάκλασης από το κανάλι 2 του συντελεστή ανάκλασης. Στο υπέρυθρο κανάλι 4, τα πράσινα φύλλα που είναι νεκρά απορροφούν ακόμα λιγότερο την ενέργεια και είναι έτσι ιδιαίτερα αντανακλαστικά. Στην πράσινη περιοχή του καναλιού 2 τα φύλλα απορροφούν τη λιγότερη ενέργεια λόγω της απώλειας χλωροφύλλης και εκθέτουν την αυξανόμενη ανακλαστικότητα. Οι τιμές της αναλογία 4/2 είναι υψηλότερες για τη βλάστηση από ότι άλλα χαρακτηριστικά συμπεριλαμβανομένων των σύννεφων. Το όριο τίθεται στη τιμλη 2 και λειτουργεί αποτελεσματικά. Τα pixels που υπερβαίνουν αυτόν τον αριθμό είναι διφορούμενα και περνούν στο στάδιο 2. Τα pixels με τις αναλογίες κάτω από αυτό το όριο περνούν στο φίλτρο 7.

7)Κανάλι αναλογίας 4/5 (Band 4/5 Ratio). Αυτό το φίλτρο αποβάλλει τους ιδιαίτερα αντανακλαστικούς βράχους και τις άμμους στα τοπία ερήμων και διαμορφώνεται με τη διαίρεση του καναλιού 4 του συντελεστή ανάκλασης από το κανάλι 5 του συντελεστής ανάκλασης. Οι βράχοι και η άμμος τείνουν να εκθέσουν τον υψηλότερο συντελεστή ανάκλασης στο κανάλι 5 απ'ό, τι στο κανάλι 4, ενώ ισχύει το αντίστροφο για τα σύννεφα. Το όριο τίθεται στο 1 και λειτουργεί αποτελεσματικά. Τα pixels που μειώνονται κάτω από αυτό το όριο ονομάζεται διφορούμενα και ξαναεξετάζονται στο στάδιο 2. Η γνώση των pixels της ερήμου σε μια σκηνή είναι σημαντική για το πέρασμα στο δεύτερο στάδιο επεξεργασίας. Επομένως διατηρείται ένας έλεγχος τέτοιου είδους pixel. Τα pixels με τις αναλογίες που υπερβαίνουν αυτό το όριο περνούν στο φίλτρο 8.

8)Κανάλι 5/6 σύνθετο (Band 5/6 Composite). Όλα τα pixels που φθάνουν σε αυτό το επίπεδο φιλτραρίσματος είναι ταξινομημένα ως σύννεφα. Ένας περαιτέρω χωρισμός σε δύο κατηγορίες επιτυγχάνεται με τη χρησιμοποίηση του φίλτρου του σύνθετου καναλιού 5/6. Για κάθε pixel σύννεφων, το κανάλι του σύνθετου 5/6 συγκρίνεται ενάντια σε μια ρύθμιση ορίου 210. Τα pixels πάνω και κάτω από αυτό το όριο είναι ταξινομημένα ως θερμά και κρύα σύννεφα, αντίστοιχα. Αυτές οι δύο κατηγορίες σύννεφων καταγράφονται στη μάσκα σύννεφων.

Μια απεικόνιση Landsat από την Κασπία θάλασσα παρουσιάζεται στην Εικόνα 1. Εκτελέσθηκε η ACCA (automatic cloud cover assessment) και παρήχθη μια μάσκα συννέφων (Εικόνα 2).

Εικόνα 2 : Μάσκα συννέφων πρώτου σταδίου,[2]πηγή



Η μάσκα έχει τέσσερις διαφορετικές κατηγορίες. Το λευκό αντιπροσωπεύει τα θερμά σύννεφα ενώ το γκρίζο αντιπροσωπεύει τα πιό κρύα σύννεφα. Το σκούρο γκρι αντιπροσωπεύει τις περιοχές μη-εντοπισμού συννέφων που αποκλείονται από την περαιτέρω ανάλυση. Οι διφορούμενες περιοχές εικόνας, που επανεξετάζονται στο στάδιο 2, είναι μαύρες. Το δεύτερο στάδιο περιλαμβάνει τη θερμική ανάλυση χρησιμοποιώντας αποκλειστικά το κανάλι 6. Μια αξιόπιστη θερμική υπογραφή αναπτύσσεται αρχικά από τη μια ή και τις δύο κατηγορίες σύννεφων που προσδιορίζονται στο στάδιο ένα. Οι δύο κατηγορίες συνδιάζονται και χρησιμοποιούνται από κοινού εάν η απεικονισμένη έκταση στερείται το χιόνι. Το χιόνι δημιουργεί προβλήματα στην ταξινόμηση των συννέφων και η παρουσία του δικαιολογεί την ανάπτυξη μιας πιό συντηρητικής υπογραφής σύννεφων. Εάν το χιόνι σε μια σκηνή είναι λιγότερο από 1% τότε θεωρείται χιόνι ελεύθερο. Εάν το χιόνι υπάρχει σε μια σκηνή, η κρύα κατηγορία σύννεφων χρησιμοποιείται αποκλειστικά για την απόδοση της υπογραφής σύννεφων. Για αυτές τις σκηνές, τα θερμότερα σύννεφα είναι διφορούμενα και ξαναεξετάζονται με όλα τα άλλα διφορούμενα εικονοκύτταρα που προσδιορίστηκαν κατά τη διάρκεια του πρώτου περάσματος. Η φωτεισμένη έρημος δημιουργεί επίσης προβλήματα στο δεύτερο στάδιο και πρέπει να αποφευχθεί. Ένας δείκτης ερήμων διατυπώνεται εξετάζοντας τα αποτελέσματα του φίλτρου 7. Ο δείκτης υπολογίζεται με τη διαίρεση της συνολικής παραγωγής pixel από το φίλτρο 7 από την ποσότητα του pixel εισαγωγής. (Περισσότερες πληροφορίες για το δεύτερο στάδιο επεξεργασίας θα βρείτε εδώ:http://landsathandbook.gsfc.nasa.gov/handbook/pdfs/ACCA_SPIE_paper.pdf).

Συμπεράσματα

Ο Landsat 7 αυτόματου αλγόριθμου αξιολόγησης συννέφων (???)σχεδιάστηκε για να παράγει γρήγορες και αξιόπιστες έννοιες για την αξιολόγηση του περιεχομένου κάλυψης σύννεφων των χαρτογαρφίσεων ETM+ που αποκτήθηκαν παγκοσμίως. Ο αλγόριθμος στηρίζεται στην εμπειρία που αποκτιέται από το Landsat 4/5 του αλγόριθμου κληρονομιάς που αναπτύσσεται για θεματικό χαρτογράφο. Ο βελτιωμένος αλγόριθμος χρησιμοποιεί δύο πρόσθετα κανάλια, εξετάζει όλα τα pixels σε μια σκηνή, και εκμεταλλεύεαι τη χωρική ανάλυση του ενισχυμένου καναλιού 6(60 μέτρα για ETM+ αντί των 120 μέτρων για το TM). Ο αλγόριθμος υιοθετεί επίσης μια συγκεκριμένη προσέγγιση δύο σταδίων σκηνής που εξετάζει τα σύννεφα μεμονωμένα για κάθε εικόνα. Ο αλγόριθμος λειτουργεί καλά για τις περισσότερες περιοχές της γης. Σε μια πρόσφατη μελέτη αποδείχθηκε ότι 75% των αποτελεσμάτων ACCA ήταν μέσα στο 10% του πραγματικού περιεχομένου κάλυψης σύννεφων και ότι 91% ήταν μέσα στο 20%. Οι προβληματικές περιοχές υπάρχουν αλλά τείνουν να περιλάβουν τη χιονισμένη έκταση στα ακραία γεωγραφικά πλάτη και τις υψηλές γωνίες φωτισμού. Το Landsat 7 αλγόριθμος ACCA χρησιμοποιείται τώρα λειτουργικά στο EDC, όπου χρησιμοποιείται για να ποσολογήσει την κάλυψη σύννεφων για περίπου 250 ETM+ σκηνές που παραλαμβάνονται κάθε ημέρα. Στα αποτελέσματα στέλνονται στη συνέχεια στο EDC DAAC και Landsat 7 στους αρμόδιους σχεδιασμού. Για τους χρήστες, η περιεκτικότητα σε σύννεφα σε μια σκηνή είναι η ενιαία σημαντικότερη εκτίμηση ενός ETM+ προϊόντος. Το σύστημα αναζήτησης EDC επιτρέπει στους χρήστες να στοχεύσουν γρήγορα σε μια επιθυμητή σκηνή με το φιλτράρισμα εκείνα με την υπερβολική κάλυψη σύννεφων. Οι αρμόδιοι για το σχεδιασμό αποστολής χρησιμοποιούν τα αποτελέσματα κάλυψης σύννεφων για να ξαναπρογραμματίσουν τις αποτυχημένες αποκτήσεις προκειμένου να πραγματοποιηθεί ο στόχος αποστολής το σφαιρικό αρχείο με την εποχιακή και ελεύθερη από σύννεφα εικόνα.

Εικόνα 3 : Μάσκα συννέφων δεύτερου σταδίου,[3]πηγή



Προσωπικά εργαλεία